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More TrigonometTic Integrals 

By Henry E. Fettis 

Abstract. Integrals of the form 

/2 ePOCOSq 0 d9, X/2 e'Posinq 0 d9 

(p real, Re(q) > -1) are expressed in terms of Gamma and hypergeometric functions for 
integer and noninteger values of q and p. The results include those of [2] as special cases. 

Introduction. The integrals considered here are 

(1) fT/2 elP cOCs q(d9, 

(2) f/2 e posinq dS, 

where p is real, and Re(q) > -1. Values for some of the above integrals are 
recorded in [1, art. 3.631], but only for special (or integer) values of "q ", and not 
always in closed form. The integrals (1) and (2) are, of course, related since, with the 
change of variable 9 -.* /2 - 9, (2) becomes 

(3) PT/2 elposinq - dO = eiP /2f / e- POCOSq 0 d 
0 0 

resulting in the following relations: 

(T/ sinq 0 cos p9 d9 = sin p21 |/ cosq 0 sin p9 d9 

(4) p 7 / 
+cos 2 f cosqCcosp9 d9, 

| / sinq sinp9 d9 = sin 1 / cos qcosp9 d9 

(5) p r / 
-cos 2 f cosq sin p9 dO. 

It is evident that, either with the aid of multiple angle formulae, or integration by 
parts, all of these integrals can be evaluated in finite form if either "p" or "q", or 
both, are integers, see, e.g., [1, arts. 2.536-8]. For this reason, it will be assumed in 
the remainder of the paper that "p" and "q" are arbitrary, noninteger quantities, 
subject to the conditions stated above. 
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1. Evaluation by Contour Integration. The integrals in question are evaluated by 
integrating the function 

(6) f(z) = (1 + z2) (zp-q-1) 

in the complex z (= pe'0 = x + iy) plane around the contour consisting of the 
portion of the real axis from x = 0 to x = 1, the quarter arc of the unit circle from 
9 = 0 to 9 = r/2, and the portion of the imaginary axis from y = 1 to y = 0. The 
total line integral is zero, provided the contour is modified by small circular arcs 
about the branch points at z = 0 and z = i, since there is no contribution to the total 
value of the integral from these arcs when their radii approach zero, provided 
Re(q) > -1 and Re(p - q) > 0. The total line integral thus becomes a linear 
combination of the real integrals 

(7) c12 Cosq 8sin p d9, 

(8) i72 cosq9cos p9 dO, 

(9) fl (1 + t)qt(p-q-2)/2dt, 
0 

(10) 1 (1 - t)qt(-q-2)2dt. 

The integral (10), as is well known, can be expressed by Gamma functions: 

(11) 1o1(1 - t)qt(p-q-2)/2dt 
= 27( 

1 
,p+ q) 

while (9) can be evaluated as a hypergeometric function: 

(12) | (1 + t)qt(p-q-2)/2dt = q 2F1(-q, 
I 

q; P q- 

(see, e.g., [1, art 9.111], or [4, p. 12]). 
Equating the real and imaginary parts of the resulting integrals gives 

(a) 21+qf/2 cos qfcos pOd9 = sin p2 ) 7( + P 

(13) (b) 21+qf /2 cosq sinp9d= (p q) F( 2F1-q, 2 2; p) 

(p - q) ( + q)fp(2 - -cos(PI%) I __q___p_- 
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and using the relations (4) and (5), 

(a) 21+ q7 /2 sin qcos p9 dO 

2sin(p7r/2) F,( p,P q 2 +p- q1 

-sin(-). J'(I + q)17p - 

2 2 + 
(14) 2 ( 2+P 

(b) 21+q sin"q 9sin p9 dO 
0 

=2cos(p7r/2) 2F(-q, P ;+P q;) 

T'(I 
+ 

q)JF(P 

q 

+cos(') ___,t 

(It may be noted that, of the four relations in (13) and (14), only (13a) is given in [1] 
for arbitrary values of "p" and "q ", and also that, although these relations were 
established under the assumption that Re(p - q) > 0, the various functions on the 
right of (13) and (14) are defined for all values of "p" and "q", provided 
(p - q) 0 O, -2, -4,. .. , -2n, and therefore the results may be extended to the wider 
range Re(q) > -1 by analytic continuation.) 

2. Expressions When 4(p - q) is a Negative Integer or Zero. From principles of 
continuity, it follows that all of the results given by Eqs. (13) and (14) must hold if 
"p" is replaced by "-p ". In particular, from (13), we get, after some obvious 
transformations of the Gamma function: 

(a) 21+qf/2 cosqcos p9d9 = sr[i + F(P + q)][1 - 
q (P - q)] 

(b) 21+qf/ cosq"sinp9d9 
0 

(15) = 2 

pl=F+ q 2F1(-q, -2(p + q); 1-4(p + q); -1) 

- cot(p + q)2 r[i + ( ( + q)- - 
(p+ q)]J[ - (p -q) 

and the above equations now yield determinate expressions when 4(p - q) is a 
negative integer or zero. Specifically if we set p = q + 2k, and make use of the 
relation 

2F1(a, b; c; z) = (1 - 
b 
2Fl(c - a, b; c; I ) 
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(15b) becomes 

21j CosOsin(q + 2k)dO= k +q F (I - k 

(16) c(1 + q) 

-(I + k + q)J(I - k) 

and if "k" is a positive integer, the second term vanishes, while the hypergeometric 
series terminates. The result then becomes equivalent to formula 3.632(3) of [1]. On 
the other hand, if "k" is a negative integer or zero, the second term remains, and the 
series is no longer finite. 

As a special result in the second case, we obtain the following closed form 
expression for the integral 

(17) I cossin qf df 9 F (1, -q; I - + cot qr, 

which has not been given previously, except for integer "q", in which case the above 
expression is indeterminate [see Eq. (20) below]. 

3. Alternative Integral Representations When p - q is an Even Integer. A different, 
and much simpler representation for the integrals in (16) and (17) can be obtained 
by re-expressing (13b) in terms of (11) and (12): 

21 +qJ /2 CoSq sin p9 dO 

(18) -J [(1 + t)q- 1]t(p-q)/2-1dt 

1-Cos (p - q) +csZ( qf 
+ 2 2 + cos 2 (P -q)| [I1-(1 t)q]t(pl-q)12-1 dt. 

p -q 2 
i-( 

In the limit, as p -* q, this gives, for arbitrary "q"> -1, 

(19) 21 Cos fJsin qfd ( t) dt+| t - dt 

2 Uq- 

u U-i 

and if "q" is a positive integer, "n the following result quoted in [1, formula 
3.631(16)]: 

?T/2 ~~~2 Un _1 22 23 2 
(20) 21J+n cosn6Jsinn9d =1 _ du= 2 + - + - + + -. 

o 0~~~~~~u -1 2 3 n 

The result of Eq. (19) is significant in that it shows that the integral on the left can 
be evaluated in terms of elementary functions whenever "q " is a rational number, 
(n/m), since then, with the change of variable 

U = Vn 
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on the right-hand side, the integrand becomes the quotient of two polynomials. For 

example, 

p7/2 cos1/2 -sin 9d9 - 2 +12 vdv = 1 - 21/2 n(21/2 + 1); 2 ~ ~ ~~1+ v 

(21) /2 Cos 1/4sin -OdO = 2+3/4 
1 v3 dv 

co1'Oi4Od (1 + V)(1 + V2) 

- 2 - 2 1/4[ln(21/4 + 1) = 2ln(21/2 + 1) + tan-1(21/4)]. 

Application of the same transformation to the integral in (16) gives, for k > 0, 

(22) 21+q f2 cosqOsin(q + 2k)OdO = 2 uq(u _ I)k-ldu, 

and after expanding the term (u - l)k- 1 by the binomial theorem and integrating 
term-by-term, we obtain the expansion of formula 3.632(3) of [1]. On the other hand, 
successive integrations by parts applied to the right-hand side of (22) leads to a 
different representation: 

f/2 cosq sin(q + 2k)OdO 

(23) 1r k-1 -I (k-1)(k-2)22+ 1 
q+ [l q+2 (q+2)(q+3) j 

When "k" is negative, similar, but more complex, expressions can be obtained for 
the integral in (16), by first subtracting from the integrands on the right side of (18) 
the first (Ikl + 1) terms of the Taylor series for (1 + t)y and (1 - t)y. For example, 
if k = -1, we get 

21i+qfT/2 cos q 8sin(q - 2) dO 
0 

- 
lim (f [(1 + t)q 1 - qt]t(P-q)/2-1dt 

p-q---2o 

+Cos 2 (p - q)f1 [i - qt -(1 - tI)]t(P-)/21dt 

(24) +21 - COS(p + 2q- + cos'(P -q)} 
p -q p- q +2 

1(+t)- 1 - qt (1 qt -(I _ dt -q 2 
t 2 ~~~~~~~~~~t2 

f2 Uq - 1 - q(u - 1) 

0 (U-i)2 du-2. 

For integer values of q = n, this again becomes a terminating series, since 

un- - n(u - 1) - 

( ); n = 0,1, 

= Un + 2 Un3+ .+ (n-n) > 
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and hence 

21+nJ / cosn sin(n - 2)9 dO 

(25) 2n-1 + 2 
2n-2 

+(n-l) 2]-2; n> 1 

--2; n = O,1. 

Similarly, 

21 +qf / cosq sin(q - 4) o dO 

(26) 2 Uq - I - q(u - 1) - 2q(q - 1)(u - 1)2 
0f2 (u-i)~ du- 2 0~~~~~( (- 1)3 

and 

21+n /J cosn 0 sin(n - 4)9 dO 

(27) [ 2n-2 3 2n-362 + 2n.+ (n - 1)(n - 2)2] 

-2n; n > 2, 
--2n; n = O,1,2. 

Alternatively, integration by parts leads to 

(28) J/ cosq f sin p9 d= =q1{ - q ; /2 cosq-1Osin(p + 1)OdO, 

which, when applied successively k times gives, for k > 0, q > k - 1, 

f 2 
C cosq sin(q - 2k)OdO 

q(q - 1) .(q-k + 1) 
2kk! 

(29) x (T/ cosq-k 9 sin(q - k) 9 d9 

1 2*1! 

(q - k+1) (q- k + 1)(q - k +2) 

(2)k-l(k - 1)! 

(q - k + 1)(q - k + 2) ... qJ' 

with the second integral in (29) given by (19). If q = k, the above result reduces to 
that of (20). 

4. The Special Case: q = 1. In the case of Eq. (14b), the condition 

Re(q) > -1 

may be modified to 

Re(q) > -1. 
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For q = -1, the first term on the right becomes 

-2 cP7T 2FJ(1 2(1 +p); '(3 +p); -1) 
(30) p + 

-c Ios 2J l (1 d t Ut 
= -cos P2pr8 21' 

where 

:()=2 [ 2 ) (2 ) 

(see [1, formula 8.371(1)], or [3, formula 15.1.23]), while the second term reduces to 
,r/2. Hence we obtain 

____Sn_P 7 1 lr/3+p\ I1+p\ 
(31) f71 ~'d9 - - Cos -Pr"'' -'I' II (31 17 

sin 9 2 2 2 1 4 
) (4 ) 

a result given previously by the author [2, Eq. (11)]. In a similar manner, by 
subtracting the result of Eq. (14a) from the corresponding one when p = 0, and 
taking the limit as q -* -1, we get the expression for 

(32) j12 - COs p9 d9 = 21 +P) - 4 (I 
o sin9 k 2J 2J 

1. sl[/I rf3 +p\ I1+p] 
2 2P[ 4) (4 ] ' 

as given by Eq. (11) of the above reference. 

5. Watson's Integral. In [5, p. 313], the following value is given for the integral 

(33 Tfos 9cop99 sin pTT p + m 1p+ m (33) |cosm cos p( dt 2m(p + m) 2Fl(-m,- 2 ;I - 
2 ; -1 

where the sign of the second parameter has been corrected (cf. Math. Comp., v. 14, 
1960, p. 221). The above result has been reproduced with the incorrect sign in [4, p. 
16], as well as in [1, art. 3.631(18)], with reference to the wrong page of [5], but is 
given correctly in art. 9.114 of [1]. 

The relation (33) is easily derived from (13a) and (14b) by bisecting the range of 
integration, and it can also be shown that the restriction p 0 0, ? n is not necessary, 
since from elementary considerations, the integral is, in this case, zero except when 
m > n and m - n is even, in which instance it is equal to 

(34) 72 (m2n) 

On the other hand, after replacing p by -p in the right side of (33), the latter 
expression becomes 

(- msnp77p-m . 
(35) sm 

2F 
( M Pm;+Pml 

whil th hyp t2m(p s e) 2sma w in t frm 1 

while the hypergeometric series may be written in the form 
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(36) (plm)2F1&m,P;2 ;1 + 2 ;-I (E p m 2 2 ~~~~~k=O p - m + 2k' 

which will be finite unless (p - m) is a negative even integer, or zero. It follows 
that, since 

lrn ( sinp7r m 
p-*m-2k p- m + 2 

the expression (35) will attain the value given by (34) when p is an integer: n < m, 
and m - n is even, but will vanish otherwise. 

1885 California, Apt. 62 
Mountain View, California 94041 
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